动物细胞的大规模培养,大规模培养常用方法

日期:2020-02-15编辑作者:生命科学

核心提示:根据动物细胞的类型,可采用贴壁培养、悬浮培养和固定化培养等三种培养方法进行大规模培养。 一、动物细胞生长特性及培养根据动物细胞的类型,可采用贴壁培养、悬浮培养和固定化培养等三种培养方法进行大规模培养。 一、动物细胞生长特性及培养温度 1.细胞生长缓慢,易污染,培养需用抗生素 2.细胞大,无细胞壁,机械强度低,环境适应性差 3.需氧少,不耐受强力通风与搅拌 4.群体生长效应,贴壁生长 5.培养过程产品分布细胞内外,成本高 6.原代培养细胞一般繁殖50代即退化死亡 依据在体外培养时对生长基质依赖性差异,动物细胞可分为两类: ●贴壁依赖型细胞:需要附着于带适量电荷的固体或半固体表面才能生长,大多数动物细胞,包括非淋巴组织细胞和许多异倍体细胞均属于这一类。 ●非贴壁依赖型细胞:无需附着于固相表面即可生长,包括血液、淋巴组织细胞、许多肿瘤细胞及某些转化细胞。 培养细胞的最适温度相当于各种细胞或组织取材机体的正常温度。人和哺乳动物细胞培养的最适温度为35~37℃。偏离这一温度,细胞正常的代谢和生长将会受到影响,甚至死亡。总的来说,培养细胞对低温的耐力比高温高。温度不超过39℃时,细胞代谢强度与温度成正比;细胞培养置于39~40℃环境中1h,即受到一定损伤,但仍能恢复;当温度达43℃以上时,许多细胞将死亡。当温度下降到30~20℃时,细胞代谢降低,因而与培养基之间物质交换减少。首先看到的是细胞形态学的改变以及细胞从基质上脱落下来。当培养物恢复到初始的培养温度时,它们原有的形态和代谢也随之恢复到原有水平。 二、贴壁培养(attachmentculture)是指细胞贴附在一定的固相表面进行的培养。 1.生长特性:贴壁依赖型细胞在培养时要贴附于培养器皿壁上,细胞一经贴壁就迅速铺展,然后开始有丝分裂,并很快进入对数生长期。一般数天后就铺满培养表面,并形成致密的细胞单层。 2.贴壁培养的优点: ●容易更换培养液;细胞紧密黏附于固相表面,可直接倾去旧培养液,清洗后直接加入新培养液。 ●容易采用灌注培养,从而达到提高细胞密度的目的;因细胞固定表面,不需过滤系统。 ●当细胞贴壁于生长基质时,很多细胞将更有效的表达一种产品。 ●同一设备可采用不同的培养液/细胞的比例。 ●适用于所有类型细胞。 3.贴壁培养的缺点:与悬浮培养法相比 ●扩大培养比较困难,投资大; ●占地面积大; ●不能有效监测细胞的生长; 4.细胞贴壁的表面:要求具有净阳电荷和高度表面活性。对微载体而言还要求具一定电荷密度;若为有机物表面,必须具有亲水性,并带阳电荷。 5.贴壁培养系统:主要有转瓶、中空纤维、玻璃珠、微载体系统等。 ● 转瓶培养系统:培养贴壁依赖型细胞最初采用转瓶系统培养。转瓶培养一般用于小量培养到大规模培养的过渡阶段,或作为生物反应器接种细胞准备的一条途径。细胞接种在旋转的圆筒形培养器-转瓶中,培养过程中转瓶不断旋转,使细胞交替接触培养液和空气,从而提供较好的传质和传热条件。 转瓶培养具有结构简单,投资少,技术成熟,重复性好,放大只需简单的增加转瓶数量等优点。 但也有其缺点:劳动强度大,占地空间大,单位体积提供细胞生长的表面积小,细胞生长密度低,培养时监测和控制环境条件受到限制等。 现在使用的转瓶培养系统包括二氧化碳培养箱和转瓶机两类。 ● 反应器贴壁培养此种培养方式中,细胞贴附于固定的表面生长,不因为搅拌而跟随培养液一起流动,因此比较容易更换培养液,不需要特殊的分离细胞和培养液的设备,可以采用灌流培养获得高细胞密度,能有效地获得一种产品;但扩大规模较难,不能直接监控细胞的生长情况,故多用于制备用量较小、价值高的生物药品。 CelliGen、CelliGenPlusTM和Bioflo3000反应器是常用的贴壁培养式生物反应器,用于细胞贴壁培养时可用篮式搅拌系统和圆盘状载体。此载体是直径6毫米无纺聚酯纤维圆片,具很高表面积与体积比(1200cm2/g),利于获得高细胞密度。篮式搅拌系统和载体培养是目前贴壁细胞培养使用最多方式,用于杂交瘤细胞、Hela细胞、293细胞、CHO细胞及其它细胞培养。此种方式培养细胞,细胞接种后贴壁快。 三、悬浮培养(suspensionculture):是指细胞在反应器中自由悬浮生长的过程。主要用于非贴壁依赖型细胞培养,如杂交瘤细胞等;是在微生物发酵的基础上发通起来的。 无血清悬浮培养是用已知人源或动物来源的蛋白或激素代替动物血清的一种细胞培养方式,它能减少后期纯化工作,提高产品质量,正逐渐成为动物细胞大规模培养的研究新方向。 四、固定化培养(immobilizationculture):是将动物细胞与水不溶性载体结合起来,再进行培养。上述两大类细胞都适用,具有细胞生长密度高,抗剪切力和抗污染能力强等优点,细胞易于产物分开,有利于产物分离纯化。制备方法很多,包括吸附法、共价贴附法、离子/共价交联法、包埋法、微囊法等。 1.吸附法:用固体吸附剂将细胞吸附在其表面而使细胞固定化的方法称为吸附法。操作操简便、条件温和、是动物细胞固定化中最早研究使用的方法。缺点是:载体的负荷能力低,细胞易脱落。微载体培养和中空纤维培养是该方法的代表,稍后专门介绍。 2.共价贴附法:利用共价键将动物细胞与固相载体结合的固定化方法称为共价贴附法(attachmentbycovalentbonding)。此法可减少细胞的泄漏,但须引入化学试剂,对细胞活性有影响,且因贴附而导致扩散限制小,细胞得不到保护。 3.离子/共价交联法:双功能试剂处理细胞悬浮液,会在细胞间形成桥而絮结产生交交联作用,此固定化细胞方法称为离子/共价交联法(cross-linkingbycovalentbonding)。交联试剂会使一些细胞死亡,也会产生扩散限制。 4. 包埋法:将细胞包埋在多孔载体内部制成固定化细胞的方法称为包埋法(entrapment)。优点是:步骤简便、条件温和、负荷量大、细胞泄漏少,抗机械剪切。缺点是:扩散限制,并非所有细胞都处于最佳基质浓度,且大分子基质不能渗透到高聚物网络内部。一般适用于非贴壁依赖型细胞的固定化,常用载体为多孔凝胶,如琼脂糖凝胶、海藻酸钙凝胶和血纤维蛋白。 5.微囊法(microencapsulation):是用一层亲水的半透膜将细胞包围在珠状的微囊里,细胞不能逸出,但小分子物质及营养物质可自由出入半透膜;囊内是种微小培养环境,与液体培养相似,能保护细胞少受损伤,故细胞生长好、密度高。微囊直径控制在200-400μm为宜。制备中应注意: ●温和、快速、不损伤细胞,尽量在液体和生理条件下操作; ●所用试剂和膜材料对细胞无毒害; ●膜的孔径可控制,必须使营养物和代谢物自由通过; ●膜应有足够机械强度抵抗培养中搅拌。 五、抗凋亡策略在细胞大规模培养中的应用 生物反应器动物细胞大规模生产过程中,细胞凋亡在细胞死亡中占主要部分。最近研究显示在大规模培养生物反应器中细胞的死亡中80%是凋亡所导致,而不是以前所认为的坏死。而在大规模细胞培养中,细胞死亡是维持细胞高活性和高密度的最大障碍。理论上讲,防止或延长细胞死亡,可以极大提高生物反应器生产重组蛋白的产量。 四、固定化培养(immobilizationculture):是将动物细胞与水不溶性载体结合起来,再进行培养。上述两大类细胞都适用,具有细胞生长密度高,抗剪切力和抗污染能力强等优点,细胞易于产物分开,有利于产物分离纯化。制备方法很多,包括吸附法、共价贴附法、离子/共价交联法、包埋法、微囊法等。 1.吸附法:用固体吸附剂将细胞吸附在其表面而使细胞固定化的方法称为吸附法。操作操简便、条件温和、是动物细胞固定化中最早研究使用的方法。缺点是:载体的负荷能力低,细胞易脱落。微载体培养和中空纤维培养是该方法的代表,稍后专门介绍。 2.共价贴附法:利用共价键将动物细胞与固相载体结合的固定化方法称为共价贴附法(attachmentbycovalentbonding)。此法可减少细胞的泄漏,但须引入化学试剂,对细胞活性有影响,且因贴附而导致扩散限制小,细胞得不到保护。 3.离子/共价交联法:双功能试剂处理细胞悬浮液,会在细胞间形成桥而絮结产生交交联作用,此固定化细胞方法称为离子/共价交联法(cross-linkingbycovalentbonding)。交联试剂会使一些细胞死亡,也会产生扩散限制。 4. 包埋法:将细胞包埋在多孔载体内部制成固定化细胞的方法称为包埋法(entrapment)。优点是:步骤简便、条件温和、负荷量大、细胞泄漏少,抗机械剪切。缺点是:扩散限制,并非所有细胞都处于最佳基质浓度,且大分子基质不能渗透到高聚物网络内部。一般适用于非贴壁依赖型细胞的固定化,常用载体为多孔凝胶,如琼脂糖凝胶、海藻酸钙凝胶和血纤维蛋白。 5.微囊法(microencapsulation):是用一层亲水的半透膜将细胞包围在珠状的微囊里,细胞不能逸出,但小分子物质及营养物质可自由出入半透膜;囊内是种微小培养环境,与液体培养相似,能保护细胞少受损伤,故细胞生长好、密度高。微囊直径控制在200-400μm为宜。制备中应注意: ●温和、快速、不损伤细胞,尽量在液体和生理条件下操作; ●所用试剂和膜材料对细胞无毒害; ●膜的孔径可控制,必须使营养物和代谢物自由通过; ●膜应有足够机械强度抵抗培养中搅拌。 高密度的最大障碍。理论上讲,防止或延长细胞死亡,可以极大提高生物反应器生产重组蛋白的产量。细胞凋亡由一系列基因精确地调控,是多细胞生物发育和维持稳态所必需的生理现象。已知凋亡的最终执行者是Caspase家族,它们均为半胱氨酸蛋白酶,各识别一个4氨基酸序列,并在识别序列C端天冬氨酸残基处将底物切断。Caspase含有可被自身识别的序列,可以切割活化自身而导致信号放大,并作用于下游Caspase成员,从而形成Caspase家族的级联放大,最终作用于效应蛋白,引起细胞凋亡。 所以在大规模培养时干扰细胞在培养中凋亡的发生,提高细胞特异性抵制遇到压力而引起凋亡的能力,有利于提高细胞的培养密度、延长细胞的培养周期,从而提高目标产品的产量2-3倍。 1.营养物质抗凋亡 在常规生物反应器构造中,营养耗竭或缺乏培养基中特殊的生长因子则引起凋亡,例如血清,糖或特殊氨基酸的耗尽。培养基中添加氨基酸或其它关键营养可抑制凋亡、延长培养时间从而提高产品的生产。大规模培养中细胞凋亡主要由于营养物质的耗竭或代谢产物的堆积引起,如谷氨酰胺的耗竭是最常见的凋亡原因,而且凋亡一旦发生,补加谷氨酰胺已不能逆转凋亡。另外,动物细胞在无血清、无蛋白培养基中进行培养时,细胞变得更为脆弱,更容易发生凋亡。 2.基因抗凋亡 与凋亡相关的一系列基因产物可对其进行正、负向的调控,因此可通过导入相应基因来调节细胞凋亡的机制。Bcl-2基因是目前最为有效的抗凋亡基因,在多种细胞系中均表现出很强的抗凋亡活性。 3.化学方法抗凋亡 凋亡发生时细胞许多部位发生生化物质的改变,有些变化如改变细胞氧化还原条件产生活性氧在凋亡信号阶段发生,其它的如破坏线粒体膜电位、激活caspase则发生在凋亡效应阶段,这在绝大多数细胞死亡中是相同的。因此,阻止这些生化物质的改变可能阻止或至少延迟细胞凋亡的发生,运用化学物质可抑制信号效应阶段的发生,被认为是抗调亡策略之一。

核心提示: 一、前言 动物细胞培养开始于本世纪初1962年,动物细胞培养规模开始扩大,发展至今已成为生物、医学研究和应用中广泛

一、前言

动物细胞培养开始于本世纪初1962年,动物细胞培养规模开始扩大,发展至今已成为生物、医学研究和应用中广泛采用的技术方法,利用动物细胞培养生产具有重要医用价值的酶、生长因子、疫苗和单抗等,动物细胞培养已成为医药生物高技术产业的重要部分。利用动物细胞培养技术生产的生物制品已占世界生物高技术产品市场份额的50%。动物细胞大规模培养技术是生物技术制药中非常重要的环节。目前,动物细胞有悬浮培养和贴壁培养.技术水平的提高主要集中在培养规模的进一步扩大、优化细胞培养环境、改变细胞特性、提高产品的产率与保证其质量上。

二、动物细胞的特点及生长特性

动物细胞虽可像微生物细胞一样,在人工控制条件的生物反应器中进行大规模培养,但其细胞结构和培养特性与微生物细胞相比,有显著差别:①动物细胞比微生物细胞大得多,无细胞壁,机械强度低,对剪切力敏感,适应环境能力差;②倍增时间长,生长缓慢,易受微生物污染,培养时须用抗生素;③培养过程需氧量少;④培养过程中细胞相互粘连以集群形式存在;⑤原代培养细胞一般繁殖50 代即退化死亡;⑥代谢产物具有生物活性,生产成本高,但附加值也高。 三、动物细胞的固定化培养技术

1、固定化培养方法

在动物细胞培养中,培养细胞的目的不仅仅要求催化活细胞培养中,培养细胞的目的不仅仅要求催化活力,更重要的是利用细胞来合成和分泌蛋白,因此如何保持细胞的活性显得尤为重要。由于动物细胞的极度敏感性,上述这些固定化方法会对动物细胞产生毒性,另外多糖 由于具有很高的离子强度也会对细胞产生毒害,故在动物细胞培养中要考虑使用较温和的固定化方法,如吸附、包埋、中空纤维或胶囊化。

吸附

①多孔陶瓷

美国某公司开发了一种完全自动化的细胞培养系统,该系统的核心是陶质矩形蜂窝状生物反应器。反应器构型是一圆筒内装置有许多陶质矩形通道的蜂窝状圆柱体,可提供4. 25 m2 的生长表面积,既可用于培养悬浮生长的细胞,又可用于培养贴壁依赖性细胞。该系统可以连续化生产蛋白质。由于产物直接分泌到培养基中,给分离纯化带来方便。而且细胞不用从培养基中分离,所以不必考虑梯度问题;当培养基高速循环时,可以保持相对恒定的营养物和氧浓度。增加套数即可实现放大。

②微载体

微载体细胞培养法是一种用于培养锚地依赖性细胞的大规模培养技术。这种培养技术是在生物反应器内加入培养液和一种对细胞无毒害作用的材料支撑的颗粒 ,使细胞在微载体表面附着和生长,并通过不断搅拌使微载体保持悬浮状态。培养液中大量的微载体为细胞提供了极大的附着表面,1g微载体其比表面积可达 6000cm2,从而可实现细胞的高密度培养。

微载体的直径在60~250μm ,由天然葡聚糖、凝胶或各种合成的聚合物组成,如聚苯乙烯、聚丙烯酰胺等。由这些材料及其改良型制成的微载体主要参考了细胞的粘附特性,在其表面带有大量电荷及其他生长基质物质,因而有利于细胞的粘附、铺展和增殖。采用微载体培养具有以下优点: ①比表面积大,单位体积培养液的细胞产率高;②采用均匀悬浮养,无营养物或产物梯度;③可用简单显微镜观察微载体表面的生长情况;④细胞收获过程相对简单,劳动强度小;⑤培养基利用率高,占地面积小;⑥放大容易,国外已有公司以1 000 L 规模培养人的二倍体细胞来生产β- 干扰素。但其缺点是搅拌桨及微珠间的碰撞易损伤细胞;接种密度高;微载体吸附力弱,不适合培养悬浮型细胞。

③大孔微载体

人们为了解决微载体培养系统中细胞易受机械损伤的缺陷以及能最大限度地扩大比表面积,开发了具有完全连通沟回的大孔微载体。

大孔微载体将细胞固定在孔内生长,因而与其他方法相比具有一系列优点: ①比表面积大,是实心微载体的几倍甚至几十倍;②细胞在孔内生长,受到保护,剪切损伤小;③与包埋法相比,传质尤其是传氧效果好;④两种类型细胞都适用;⑤细胞三维生长,细胞密度是实心微载体10倍以上,有的可108个/ mL;⑥适用于长期维持培养,细胞生长情况依然良好;⑦微载体浓度高,实心载体在培养液中浓度增大到一定时,细胞密度反而下降;而大孔微载体在浓度较高时,表面碰撞增加,能促使细胞在孔内生长;⑧最适合于蛋白质生产和产物分泌。因此有人预言,大孔微载体质生产和产物分泌。因此有人预言,大孔微载体技术将成为动物细胞大规模培养的一种常用方式。

包埋

将动物细胞包埋在各种多聚物多孔载体中而制成固定化动物细胞的方法称为包埋法。此法步骤简便,条件温和,负荷量大,细胞泄露少。因细胞嵌入在高聚物网格中而受到保护,细胞能抗机械剪切。但该法也有一定缺点,如扩散限制,并非所有细胞都处于最佳营养物浓度。包埋法一般适用于非锚地依赖型细胞的固定化。多孔凝胶是最常用的载体,用于动物细胞固定化的凝胶主要有海藻酸钙、琼脂糖、血纤维蛋白等。

①海藻酸钙凝胶

海藻酸钙凝胶包埋法是将动物细胞与一定量的海藻酸钠溶液混合均匀,然后滴到一定浓度的氯化钙溶液中形成直径约1mm内含动物细胞的海藻酸钙胶珠,分离洗涤后即可用于培养。此法操作时条件温和,对活细胞损伤小。但固定后机械强度不高。为了大量制备海藻酸钙凝胶包埋的固定化细胞,国外已有专门的振动喷嘴设备可供使用。

②琼脂糖凝胶

琼脂糖凝胶可用二相法制得。将含有细胞的琼脂糖溶液分散到一个水不溶相中 ,形成直径0.2mm凝胶珠珠,移去石蜡油后,细胞即可进行培养。同海藻钙一样,琼脂糖更适于培养悬浮细胞。尽管凝胶珠形成过程很复杂,目前放大体积不超过20 L。但琼脂糖凝胶无毒性,具有较大的空隙,可以允许大分子物质自由扩散,因此该法特别适用于蛋白产物的连续生产。有人曾用琼脂糖包埋杂交瘤细胞和淋巴细胞生产单克隆抗体和白细胞介素。

③血纤维蛋白

将动物细胞与血纤维蛋白原混合,然后加入凝血酶。凝血酶将血纤维蛋白原转化为不溶性的血纤维蛋白,将动物细胞固定在其中。血纤维蛋白可以促进细胞贴壁,因此两种类型的细胞都适于培养。而且基质高度多孔,允许大分子物质的自由扩散。但机械强度差,对剪切力很敏感。

中空纤维

中空纤维细胞培养技术是模拟细胞在体内生长的三维状态,利用一种人工的“毛细管”即中空纤维给培养的细胞提供物质代谢条件而建立的一种体外培养系统。

中空纤维培养技术的优点是无剪切、高传质、营养成分的选择性渗入,使培养细胞和产物密度都可达到比较高的水平。缺点是膜的污染和堵塞,观察困难,细胞生长或过量气体产生会破坏纤维。中空纤维培养技术的发展趋势是让细胞在管束外空间生长,以达到更高的细胞培养密度。目前中空纤维反应器已进入工业化生产,主要用于培养杂交瘤细胞来生产单克隆抗体。

微囊化

微囊化培养技术其要点是:在无菌条件下将拟培养的细胞、生物活性物质及生长介质共同包裹在薄的半透膜中形成微囊,再将微囊放入培养系统内进行培养。生长介质为1.4%海藻酸钠溶液,半透膜由多聚赖氨酸形成。培养系统可采用搅拌式或气升式反应器系统。实验证明,采用批式和连续灌注式培养杂交瘤细胞生产单克隆抗体,在7~27 d微囊内抗体浓度可达1250~5300 mg/ L。利用微囊包裹具有特定功能的组织细胞,形成免疫隔离的人工细胞,以此植入疾病动物或病人体内。1980 年报道了微囊化胰岛移植治疗大量实验性糖尿病。他们将同种大鼠胰岛用海藻酸- 聚赖氨酸- 聚乙烯亚胺包埋后植入链脲霉素诱导的糖尿病大鼠体内,在未用免疫抑制剂的情况下,控制大鼠血糖正常达一年左右。

胶囊化培养的优点是: ①可防止细胞在培养过程中受到物理损伤;②活性蛋白不能从囊中自由出入半透膜,从而提高细胞密度和产物含量,并方便分离纯化处理。缺点是: ①微囊制作复杂,成功率不高;②微囊内死亡的细胞会污染正常产物;③收集产物必须破壁,不能实现生产连续化。

2、固定化方法的选择

培养规模

由于各种固定化系统可以获得相同的细胞密度,且细胞的产率主要取决于细胞的扩散,因此反应器的体积是培养规模放大的主要决定因素。虽然微载体系统可以提供最大的单元操作,但其他系统也可以通过增加单元套数而获得放大。

培养方式

除了海藻酸钙包埋法外,其他固定化基质都是多孔型的,能允许大分子物质自由出入,因此可实现蛋白质产物的连续生产。在凝胶珠和微囊中可使蛋白产物积聚到很高的浓度,给后续的分离纯化处理带来方便,并大大降低了生产成本。

所培养的细胞类型

大多数固定化系统都适用于贴壁型细胞的培养。而在吸附非贴壁型细胞时,由于吸附力弱容易出现细胞泄露。

制备方法的难易和成本

由于固定化基质是由制造商在不同的竞争时期提供的,因此各种固定化方法的成本很难比较。海藻酸盐和琼脂糖是以化学试剂形式出售;胶原珠是以无菌形式提供给使用者,以便于接种。

3、固定化培养存在的问题

固定化细胞培养的细胞密度较一般悬浮培养高10~100 倍,但同时也带来了如何保证足够的营养物质和氧的传递问题。

细胞群体在大规模、长时间培养过程中分泌产物能力的丢失或产物活性的降低依然是细胞培养领域深感棘手的问题。包埋在凝胶或微囊中死亡的细胞会对其他细胞产生污染和毒害作用。

培养基及固定化基质价格昂贵,生产成本高居不下。尤其是高效的微载体细胞培养介质,销售价格一直呈上涨趋势。

目前对细胞代谢和生长动力学的研究以及在线监测水平还远不足以设计出确定的优化培养系统,从而导致昂贵培养基的浪费。

4、固定化动物细胞培养的展望

固定化动物细胞培养工程发展的总方向是大型化、自动化、精巧化、低成本、高细胞密度、高目的产品产量。从国际上的发展趋势看,动物细胞培养技术主要有:开发细胞培养反应器和培养系统; 开发培养贴壁细胞的载体; 开发微囊技术; 开发杂交、重组技术; 开发无血清和化学合成的培养基; 蛋白质浓缩和提纯技术。

四、动物细胞的灌注培养技术

动物细胞培养同传统的微生物细胞培养相比,动物细胞培养存在着细胞倍增时间长、代谢途径复杂、对营养的要求高、对外界环境如温度、pH、溶氧、渗透压、剪切力的敏感性强、细胞状态容易改变等问题,大大增加了动物细胞培养的难度。如何完善细胞培养技术,提高动物细胞大规模培养的产率,一直是国内外研究的热点之一。

1、灌注培养原理

常用的动物细胞培养方法有分批培养、补料分批培养、连续培养,但产率一直不高。直到六十年代,灌注培养技术的出现,为动物细胞高密度大规模培养开辟了广阔的前景。在随后的三十年中,灌注培养技术得到了迅速地发展,已成为动物细胞大规模培养的主要方法。

在灌注培养中,细胞保留在反应器系统中,收获培养液的同时不断地加入新鲜的培养基。灌注培养的主要优点是连续灌注的培养基可以提供充分的营养成分,并可带走代谢产物,同时,细胞保留在反应器系统中,可以达到很高的细胞密度。同其他方法相比,灌注培养的产率可以提高一个数量级,并可大大降低劳动力消耗。

灌注培养主要可分为两大类:悬浮灌注培养和床层培养。悬浮灌注培养是在普通悬浮培养的基础上,加上一个细胞分离器而成,以微载体悬浮培养加旋转过滤分离器最为常见。床层培养则把细胞直接保留于床层,不需要细胞分离器,其中堆积床和大孔载体培养的应用较广。

2、灌注培养方法

在灌注培养前,对动物细胞的生长和生理特性进行充分的考察,是十分必要的,能为灌注培养提供有益的参考。以比生长速率为例,大量实验表明,细胞的比生长速率降低时,产物的比生长速率提高,有人控制细胞的比生长速率为最大比生长速率的60%抗体生长速率增加了97%。灌注培养可以从两个方面入手,一是改变动物细胞的培养环境,实行阶段培养;二是进行代谢调控。

阶段培养

一般认为,动物细胞的培养条件应尽量模拟来源动物体内的条件,而且在培养中通常保持不变。而实际上,每种细胞的最适生长条件和最适产物生成条件是不同的。阶段法培养就是根据这一点,把培养过程分为细胞生长期和产物生成期,分别采取不同的培养条件,以达到在细胞生长期使接种细胞大量繁殖,提高比生长速率,尽快获得高密度细胞;在产物生成期保持细的高密度,维持存活率,降低细胞死亡速率,持续获得高产率蛋白的目的。当产物蛋白对细胞有抑制时,阶段培养尤见优势。具体说来,可以用以下方法:

①pH值阶段培养

对大多数动物细胞,培养液中合适的pH为7.2-7.4。低于6.8或高于7.6对细胞的生长都不利。近年来,对胞内pH的研究比较活跃。实验发现胞内pH对细胞的代谢影响很大,胞内pH 降低0.2个单位,就足以使磷酸果糖激酶失活,抑制糖酵解途径,使细胞的生长受阻;而胞内pH 升高0.2个单位,可以提高糖酵解速度50%。胞外pH 的降低和培养液中铵离子浓度的提高,都能引起胞浆酸化,胞内pH降低。有人把CO2的浓度由5%降为2.5%,胞内pH提高了0. 2个单位。胞内pH比胞外pH的检测麻烦,所以还没有广泛应用。

②溶氧阶段培养

不同细胞和同一细胞在不同生长时期对氧的需求均不相同.有人发现细胞生长的最适溶氧值为60%,但有人发现杂交瘤的最适溶氧为100%。一般说来,溶氧主要影响细胞的繁殖,而对产物的生成无直接影响,通过影响细胞生长间接起作用。通常在细胞生长初期控制溶氧的较低的水平,在对数生长期,当细胞达到较高的浓度时,提高溶氧水平;在产物生成期,应控制溶氧的适当水平。溶氧过高,细胞就会加速消耗营养物质,产生许多代谢产物。这些代谢产物对细胞有抑制作用,会大大降低细胞的存活率,降低产物的比生成速率。溶氧过低,细胞过氧的需求得不到满足,依然会降低产物蛋白的产物。

③化学试剂诱导阶段培养

如果构建的细胞上有可诱导基因,进入产物生成期后,就可以添加化学试剂对基因进行诱导,以实现目的基因的高表达,比如,将表达尿激酶原和二氢叶酸还原酶基因的两个转录单位置于同一载体,分别受金属硫和SV40早期启动子控制,具有用氨甲喋呤使基因扩增和利用金属Zn2+诱导的双重功能,有利于尿激酶的高表达。

细胞在细胞周期的不同时期,不仅蛋白的分泌速率不同,而且所分泌蛋白的类型和糖基化程度也可能不同。因此,研究并控制细胞的生理状态很重要。然而,在细胞培养中,细胞生理状态的检测很麻烦。有人发现,细胞大小随各时期变化很明显,因此可以作电子细胞计数器就行了。分段培养应结合具体的培养条件进行。有些细胞的最适生长温度和产物生成温度相同,就不能进行温度阶段培养,而应寻找别的差异条件。在细胞生长期有的细胞可能会因比生长速率过大而产生非生产性细胞,这时就应控制比生长速率在一个适当的范围。

代谢调控培养

乳酸和氨是在培养过程中动物细胞产生的主要代谢产物,对细胞的正常生理功能在抑制甚至毒害作用。在分批培养和补料分批培养中的这一问题尤为突出。尽管灌注培养可以通过提高灌注速度来去除抑制产物。但是,一方面由于灌注培养细胞浓度很高,提高灌注速率,营养成分的供给十分充分,氨和乳酸的产生速率也增加了。另一方面,过高的灌注速率提高了细胞的比生长速率,降低产物的比产率,加上细胞对营养的利用并不彻底,培养液中会残留大量的蛋白,造成提取纯化的不便和培养基的浪费。所以,在培养中调控动物细胞的代谢途径一直较受重视。通过代谢调控,可以减少副产物的产生,降低细胞的死亡速率,还可以控制灌注速率和培养液成分,控制细胞的状态和比生长速率,以提高目标蛋白的产率。具体有以下方法:

①控制葡萄糖浓度法

乳酸浓度升高,会导致比生长速率降低,比死亡速率升高。乳酸的降低可更换葡萄糖为己糖如果糖或半乳糖,还可限制葡萄糖减少乳酸的生成,使初始葡萄糖浓度较低,在培养过程中再添加。在控制葡萄糖浓度法培养中,生长期可以使葡萄糖浓度稍高,以促进细胞生长;在产物合成期降低葡萄糖的浓度,降低乳酸的产生速率,避免乳酸的积累,减少毒害,降低死亡速率,维护持活细胞数在较高水平。同时还可以降低比生长速率,增加目标蛋白的产生速率。

灌注葡萄糖的同时,要间歇或连续地加入其他组分,以避免营养缺乏,其中谷氨酰胺要保持在较低水平,因为细胞的生长不依赖糖酵解,即使没有葡萄糖,细胞仍可以通过降解谷氨酰胺获得能量。假如谷氨酰胺的浓度过高,细胞就会偏向谷氨酰胺酵解,从而削弱这种方法的效果。由于葡萄糖的价格相对低廉,这种方法很有前途。

②控制谷氨酰胺法

上面提到,没有葡萄糖,细胞可以利用谷氨酰胺作能量物质。因此,控制谷氨酰胺比控制葡萄糖要容易些,应用这一方法的报道也较多。控制谷氨酰胺浓度的目的,主要是减少氨的产生。氨对细胞的毒性比乳酸大得多,表现为降低比生长速率,增加死亡速率。有人详细地研究了动物细胞的代谢过程,采用底物限制补料分批工艺对动物细胞进行代谢控制。他采用这一方法,使氨的浓度降低了一半。控制谷氨酰胺法与控制葡萄糖法一样,要维持葡萄糖在较低水平。

③控制葡萄糖和谷氨酰胺法

在细胞中,葡萄糖代谢和谷氨酰胺代谢密切相关。葡萄糖消耗上升,则谷氨酰胺消耗下降,反之亦然。在相当大的一个范围内,葡萄糖和谷氨酰胺的消耗速率与其浓度成正比。控制葡萄糖和谷氨酰胺法可降低乳酸和氨的产生,还能有效控制比生长速率。在细胞生长期,提供充分的营养,供细胞的需要;在产物合成期,降低葡萄糖和谷氨酰胺的浓度或流量,降低比生长速率,增加目标蛋白的产率。

④去除代谢产物法

通常使用透析膜,超滤腊或吸附剂选择性去除乳酸、氨或铵离子。有人建议加化学试剂比如钾盐来消除氨的影响 ,也有人建议可使用有谷氨酰胺合成酶的细胞。

3、灌注培养的缺点

灌注培养发展到现在,还有许多急待解决的问题。其最大的缺点是培养基的利用不充分,造成一定的浪费。随着细胞培养技术和产品分离技术的进一步发展,建立细胞培养与产物分离的耦合系统 ,能充分利用培养液,降低生产成本,一直是人们追求的目标,这里就不赘述。

五、动物细胞无血清培养技术

动物细胞无血清培养是生物科学领域中的重要研究课题之一。由于无血清培养基可以是完全采用已知分子结构和构型组分的低蛋白或无蛋白培养基。因而它不仅为研究和阐明细胞生长、增殖和分化的调节机制提供了有力的工具,而且为现代生物技术,尤其是细胞工程的应用准备了更好的条件。下面就动物细胞无血清培养基及其应用现状做一概述:

1、动物细胞培养基的发展过程

天然培养基阶段

合成培养基阶段

无血清培养阶段

2、动物细胞培养中血清的作用

提供有利于细胞生长增殖所需的激素、生长因子或提供合成培养基所缺乏的营养物质。

提供可识别金属、激素、维生素和脂质的结合蛋白,并通过与上述物质的结合而起到稳定和调节上述物质的作用。此外结合蛋白还可消除某些毒素和金属对细胞的毒性作用。

提供贴壁细胞固着于适当的附着面所需的贴壁因子和扩展因子。

提供蛋白酶抑制剂,使细胞免受蛋白酶的损伤。

提供 PH 缓冲物质,调节培养基PH。

影响培养系统中的某些物理特性如:剪切力、黏度、渗透压和气体传递速度等。

3、动物细胞培养中血清可能引发的问题:

在一些基础研究中,往往影响实验结果。

血清中含有某些不利于细胞生长的毒性物质或抑制物质,对某些细胞的体外培养有去分化作用。

血清中大量成分复杂的蛋白质给疫苗、细胞因子、单克隆抗体等细胞产品的分离纯化带来很大困难。

4、无血清培养基的组成及其主要补充成分

激素和生长因子

结合蛋白

贴壁因子和扩展因子

低分子量营养因子

5、无血清培养基的优点

可避免血清批次间的质量变动,提高细胞培养和实验结果的重复性。

避免血清对细胞的毒性作用和血清源性污染。

避免血清组分对实验研究的影响。

有利于体外培养细胞的分化。

可提高产品的表达水平并使细胞产品易于纯化。

6、无血清培养基的缺点

主要表现为细胞的适用范围窄,细胞在无血清培养基中易受某些机械因素和化学因素的影响,培养基的保存和应用不如传统的合成培养基方便。

生技网(www.biogo.net)

本文由4688美高梅集团发布于生命科学,转载请注明出处:动物细胞的大规模培养,大规模培养常用方法

关键词:

细胞培养入门教程,细胞房工作守则

核心提示:一、常规操作1.穿着专用实验服。自己的白大衣或厚外套,可脱在门外的衣帽架上。2.穿着专用一、常规操...

详细>>

细胞凋亡的研究方法,几种细胞凋亡的检测方法

核心提示:一、形态学研究方法 (Morphological methods): 1、普通显微镜:凋亡细胞变小、变形、细胞膜完整、发泡现...

详细>>

ELISA的操作要领,酶联免疫性吸附试验操作要领

核心提示:1 标本的采取和保存可用作ELISA测定的标本十分广泛,体液、分泌物和排泄物等均可作标本以 1标本的采取...

详细>>

常规片段的琼脂糖凝胶回收,琼脂糖凝胶回收

核心提示:从琼脂糖凝胶中回收DNA,是一种简单不过的常规实验操作。但是由于胶回收的质量和数量直接影响后继的...

详细>>